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ABSTRACT  
Existing chemical models of bacteria are complicated, due to the 
thousands of interacting chemical reactions within the cell. To gain 
a higher level of understanding, more transparent and abstract 
models are needed. In this paper an intentional dynamic modelling 
approach is introduced and used to simulate the behaviour of 
Escherichia coli. A model of the entire cell is presented that covers 
E. coli’s behaviour, including its intracellular processes and their 
control. The intentional state properties used in the model are in a 
one-to-one correspondence to chemical state properties: 
concentrations of specific substances within the cell. Via these 
correspondences the dynamic relationships between intentional 
state properties are justified by chemical laws. A software 
environment has been developed for simulation and automated 
analysis of such a model.  
 
Categories and Subject Descriptors 
I.2.11 [Computing Methodologies]: Artificial Intelligence  
– Distributed AI – Intelligent Agents 

Keywords 
Agent, dynamics, cell, intentional, E. coli 

1. INTRODUCTION 

Even the simplest life forms require the interaction of more than 
400 chemical processes that are encoded by genes (Hutchison et 
al., 1999).  The sequencing of many complete genomes should 
bring cell biochemistry to full fruition, at last: efforts can now be 
directed at clarifying the dynamic functioning of genes within the 
ensemble of cellular processes. But how should one manage and 
understand hundreds of biochemical processes simultaneously?  
After ages of qualitative or quasi-quantitative modeling, a 
mathematical biochemistry approach is coming within reach 
(Westerhoff, 2001).  The biochemical processes are described by 
the appropriate differential or algebraic equations, the parameter 
values are taken from experimental studies, and are integrated 
numerically (Mendes, 1997).  For some unicellular organisms such 
as the bacterium E. coli (Rohwer et al., 2000, Wang et al., 2001, 
Ben-Jacob et al., 1997), the yeast S. cerevisiae  (Teusink et al., 

2000; Rizzi et al., 1997), D. discoideum (Wright and Albe, 1994) 
and T. brucei (Bakker et al., 1997), and for the red blood cell 
(Mulquiney and Küchel, 1999) some of the chemical pathways are 
understood in sufficient kinetic detail to obtain a description of 
their import and primary processing of food.    

As close to the aims of our scientific endeavor as this approach 
may seem to be, it does have major limitations: (1) Even for 
relatively short biochemical pathways, a hundred or more reaction 
parameters are needed, which have rarely been determined under 
the appropriate experimental conditions (Teusink et al., 2000). (2) 
Due to non-linearities in the dynamics, results can depend strongly 
on parameter values, such that simple estimates may not suffice. 
(3) Biochemical pathways are integrated with other pathways, 
including ones of signal transduction and gene expression, for 
which reliable parameter estimates are even rarer (Kholodenko et 
al., 1999).  (4) It is still unclear whether parameter values 
determined in vitro are relevant in vivo (Visser et al., 2000; 
Rohwer et al. 1998).  (5) Actual behavior of intracellular pathways 
may be much less complex than possible in principle on the basis 
of their complexity (e.g. Van Rotterdam et al., 2002).  (6) At best 
this approach delivers a computer replica of (part of) the living 
cell, which is almost as remote from human understanding, as the 
cell itself; this modeling approach gives too detailed and complex 
an account, where the human mind tends after understanding 
merely the essence.  

Indeed, in order to grasp the workings of the cell, approaches 
abstracting from biochemical detail might be helpful.  One type of 
such approaches focuses on a particular facet of cell function, such 
as its energetics, control, performance, optimisation, type of 
dynamics, or flux distributions (Westerhoff and Van Dam, 1987; 
Heinrich and Schuster, 1996; Moller et al., 2002) thereby allowing 
substantial approximations to rate equations. A second type 
recognizes that some conglomerates of biochemical processes act 
as functional units such as “metabolic pathway”, “catabolism”, 
“transcriptome” and “regulon”.  Some of these concepts have been 
or are being defined formally (Kahn & Westerhoff, 1991; Rohwer 
et al., 1996b; Schilling et al., 200), but optimal implementation is 
still in its infancy.  A third type of approach recognizes a less than 
full complexity in cell functioning, for instance in the limited 
dimensionality of the transcriptome, or the metabolome.  Indeed, 



  

viewed from the functional side, the cell effectively makes 
decisions regarding its internal and externally observable behavior, 
given its environmental circumstances, and implements these 
decisions into appropriate actions. The exact time it takes to make 
these decisions, and hence the precise integration of the differential 
equations, may be much less important than the fact that the 
decision is taken within some reasonable time interval.  This 
suggests that considering a cell from the perspective of an agent 
sensing the environment, integrating that information with its 
internal state, and then choosing between possible behavioural 
patterns of action, may provide the basis of an alternative 
modelling approach.  The fact that the agent will consist of a 
number of biochemical elements marries this to the second type of 
approaches (chemical processes as functional units), the emphasis 
on regulation to the first type (focusing on a particular facet).  

Within the field of Artificial Intelligence, the area of Agent 
Systems addresses the modelling of artificial and natural decision 
makers. One sort of these agent models are the BDI-models 
describing agents in terms of internal state properties such as 
Beliefs, Desires and Intentions (e.g. Rao and Georgeff, 1991).  In 
(Jonker, Snoep, Treur, Westerhoff, and Wijngaards, 2002) the 
BDI-modelling strategy identifies and analyses steady states within 
the cell in relation to environmental circumstances. The BDI-
models available in the literature do not adequately address the 
dynamics of the internal state properties over time, however, nor 
do they specify in which order and at what time the appropriate 
beliefs, desires and intentions are generated in relation to 
environmental conditions. Since Jonker et al. (2002) dealt with 
steady states only, this limitation of the BDI-model was harmless, 
and relating the steady states to different environmental 
circumstances fitted well to the logic of a BDI-modelling strategy 
which abstracts from internal dynamics. 

A main problem to be addressed in non-steady dynamics, is to 
characterise for changing environmental conditions, for example, 
what internal dynamics realise the transitions over time from one 
steady state to another. The dynamics become even less trivial 
when the environment is changing continuously so that the cell 
never reaches any steady state. An underlying fundamental 
problem is how to relate discrete, binary decision processes to 
continuous dynamics over time as occurring in the biochemical 
reaction network. 

In agent simulation models, time is often chosen to be discrete 
and dynamics is based on step by step state transitions from one 
discrete point in time to the next (e.g., Sloman and Poli, 1995; the 
Executable Temporal Logic of  Barringer et al. 1996 and Fisher, 
1994, the step-logic of Elgot-Drapkin and Perlis, 1990). These 
discrete modelling approaches do not fully capture the continuous 
dynamics of processes in the real world, which is the basis of, for 
example, the internal dynamics of cellular processes. 

For the analysis of concurrent real-time processes, also some 
temporal requirement specification languages have been 
introduced; e.g., (Dardenne et al., 1993; Darimont and 
Lamsweerde, 1996; Dubois et al., 1995). In (Chaochen, Hoare, and 
Ravn, 1991) a calculus is presented to model requirements and 
designs for real-time systems. Another logic based approach using 
time durations is presented in (Sandewall, 1997). These approaches 
can be used for analysis of non-discrete dynamics but are not 
aimed at simulation. 

The current paper addresses the problem of continuous versus 
discrete time in yet another way.  It is shown how the BDI-model 
that abstracts from internal dynamics can be extended or 
temporalised by adding a (continuous, real time) temporal 

dimension for the internal dynamics of the beliefs, desires and 
intentions over time (cf. Finger and Gabbay, 1992). It is shown that 
this temporalised Continuous Time BDI-model covers the (non-
steady state) dynamics of a cell’s biochemical pathways. By using 
this model to describe the cell’s internal processes in terms of state 
properties such as beliefs, desires and intentions, the amount of 
biochemical detail can be reduced by abstracting from them. This 
abstraction is systematic/scientific, yet much in parallel with 
intuition. Since most researchers intuitively (but informally) use 
intentional state properties to describe the apparently intelligent 
behaviour of the cell, this model is easier to understand than the 
more usual differential equation type of model.   

The formal treatment using the temporalised BDI-model has the 
additional advantage of making it suitable for simulation in a 
software environment that is based on an extension of the paradigm 
of executable temporal logic (Barringer, Fisher, Gabbay, Owens, 
and Reynolds, 1996).  Because no numerical integration has to be 
done, these algorithms are efficient to use.  

The paper is structured as follows. In Section 2 the living cell is 
described from two viewpoints; connections are indicated: 
• the biochemical viewpoint, based on relationships between 

genes, mRNAs, enzymes and metabolism, and cofactors 
involved in these relationships 

• the intentional viewpoint, based on relationships between 
beliefs, desires, intentions and actions, and additional factors 
involved in these relationships 

Section 3 introduces a continuous-time interval-based temporal 
modelling approach in which (discrete) state properties of some 
duration lead to the occurrence of another state property for a 
certain time duration, after some time delay.  This approach 
combines discrete state aspects with continuous real-time aspects.  
Subsequently, in Section 4, the behaviour of the common 
bacterium E. coli is modelled using temporal relationships between 
BDI notions. Some simulation results are also shown. Section 5 
concludes the paper. 

2. RELATING CHEMICAL AND 
INTENTIONAL STATE PROPERTIES IN 
E. COLI 

Bacteria are small autonomous living systems that interact with 
their environment; the understanding of the regulation of the 
behaviour is complicated by the enormous complexity of the 
chemistry in the living cell. Using intentional state properties to 
model the regulation of a bacterium, this regulation may be more 
easily understood. First, the regulation in bacteria is briefly 
explained in biochemical terms. Second, the behaviour of an agent 
is explained using intentional state properties. Third, the 
relationships between the intentional state properties and the 
chemicals in the bacterial regulation are presented.  

2.1 Bacterial Regulation 

In bacteria, as in every living cell, the regulation of its internal 
processes consists of several steps (Neidhardt, Curtiss III, 
Ingraham, Lin, Brooks Low, Magasanik, Reznikoff, Riley, 
Schaechter & Umbarger, 1996). In this paper, the regulation of the 
lactose import is taken as an illustration; other regulation paths 
follow similar steps as depicted on the left side of Figure 1. 
Regulation is based on substances that indicate the outside 
conditions. 
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Figure 1.  The correspondence between the bacterial regulation and the temporal dependencies in the BDI model 

 
Transcription is a process that, given parts of the DNA 

(operons) that code for proteins, conditionally specific types of 
mRNA are created. Transcriptional regulation means that 
activation proteins must be present and certain repressors must be 
absent for a particular operon to be transcribed. Translation is a 
process that, given a specific mRNA creates specific proteins: 
enzymes. Translational regulation enables or disables the 
translation of mRNA by (co)factors. Enzymes catalyze chemical 
reactions, causing flux leading, for example, to growth. The 
product of one reaction is often used as the source for the next 
producing a pathway. Some enzymes can be deactivated by 
inhibitors, this process is called metabolic control, deactivating the 
entire pathway. 

So, the regulation of the processes within a bacterium consists 
of several steps. First, circumstances in the external environment 
lead to certain concentrations of specific internal substances. Then, 
depending on circumstances, the transcriptional regulation is done, 
possibly resulting in mRNA. Subsequently, also depending on 
circumstances, the translational regulation is done, possibly 
resulting in proteins. The metabolism, comprised of energy 
production, transport and growth pathways, further regulates the 
activation and inhibition (inactivation) of certain enzymes. When 
all this is done, enzymes may be ready to catalyse chemical 
reactions. When enzymes catalyse reactions, they cause an 
increased flux, leading to growth of the bacterium.   

2.2 Intentional State Properties 

The intentional properties used to describe behaviour are taken 
from socalled BDI (Beliefs, Desires and Intentions) models; e.g., 
(Dretske, 1991; Rao and Georgeff, 1991). The beliefs represent 
what the agent deems to be true in its environment. A belief is 
present due to sensing (in the present or in the past). Desires are 
interpreted as what the agent wants to accomplish or fulfil. Agents 
can have desires contradictory in their fulfilment, for example 
desiring lots of ice creams and slim waist. A desire, together with a 
sufficient additional reason, leads to an intention to fulfil the 
desire. An additional reason is a belief that has to hold, in order for 
the intention to be generated. Intentions are interpreted as that the 
agent will make something happen (action), as soon as a belief in 
an opportunity (for the action) occurs. Opportunities are states of 
the environment that give the possibility to perform an action. 
Actions performed by the agent affect its internal or external 
physical environment. The relations between the intentional state 
properties are depicted on the right side of Figure 1. 

2.3 Intentionalisation 

The intentional state properties used to describe the behaviour can 
be related to the substances used in the bacterial regulation. The 
internal substances relating to the situation in the environment are 
chosen to correspond with the beliefs. DNA parts are chosen to 
correspond to desires. Within the BDI model a desire together with 
an additional reason results in an intention. The conditions for 
transcriptional regulation are the substances relating to 
circumstances in the external environment. These substances must 
bind to the DNA in order to get mRNA. Therefore, the presence of 
the necessary amounts of these substances is chosen to correspond 
with the set of beliefs that make up the additional reason. In other 
words, the conditions needed for the transcriptional regulation 
correspond with the primary additional reasons of the intentional 
model. As can be seen from the left side of Figure 1, DNA is used 
to create mRNA. Therefore, with DNA as desire, mRNA is chosen 
to correspond with an intention to perform an action. The enzymes 
created by the translation are used to increase the flux of chemical 
reactions (which correspond to actions in the intentional model). 
Thus, active enzymes are chosen to correspond with action 
initiations. The (co)factors necessary for the translation of mRNA 
into enzymes correspond with the secondary additional reasons for 
the creation of action initiations. Moreover the absence of 
inhibitors of the enzymes is a condition for the action to be 
initiated, given the intention. When enzymes cause flux, (i.e., 
successfully catalyse reactions), this corresponds to succesful 
action performance in the world (enabling conditions are fulfilled).  

In Figure 1 the correspondence between the intentional state 
properties and the chemical regulation of the bacterium is 
displayed. In summary, the following correspondences are made: 

 
DNA     - desire 
mRNA    - intention 
active enzyme    - initiated action (or action readiness) 
flux     - succesful action 

3. TEMPORAL MODELLING APPROACH 

The bacterial behaviour results from a multitude of biochemical 
processes. These operate on each other over time, producing the 
behavioural regulation. The overall regulation process is not easy 
to understand; for example, a number of feedback loops between 
different stages of the regulation process and a high number of 
chemical reactions are involved.  
 



  

A more abstract model for the dynamics of biochemical 
processes can be obtained by introducing categories of 
concentrations of substances, and relating different categories of 
the same and of different substances over time. In this section 
temporal relationships are used to express the timing dynamics. 
The resulting abstract model captures the timing dynamics of the 
biochemical reactions in logical temporal relationships using 
continuous time. 

3.1 Temporal Modelling of Chemical 
Processes 

A generally accepted way to describe biochemical reactions is in 
the form: A + B ↔ C + D. This expresses that substances A and B 
can be transformed into substances C and D, and that the reverse 
process is also possible. In the cell the pathways consist of several 
reactions chained together. For example (1) sketches the pathway 
for the transcription of the lac operon. The transcription of the lac 
operon (Neidhardt et al., 1996) will be the leading example.  

transcription lactose:      (1)     
nucleotides + DNA_lactose ↔ … ↔  mRNA_lactose + DNA_lactose
  

Formulae like (1) do not express inhibitors, activators, speed 
and equilibrium conditions. For example lactose and CRPcAMP 
are the activation proteins regulating the transcription of the lac 
operon. Within the well-known Michaelis-Menten equations the 
rate of a reaction can be derived on the basis of concentrations of 
substances, binding constants, stoichiometry values and 
equilibrium constants. Michaelis-Menten provides formulae for the 
reactions in continuous time. Equations such as Michaelis-Menten 
equations can be extended with inhibitors and activators. Using 
these formulae, a complete description of the processes in the cell 
could be given if all the reactions and their parameters were 
known, which is not the case. Example parameter values are given 
for the transcription of the lac operon reaction, see (2). 

Regulators: lactose 0.01, CRP_cAMP 0.01, kcat=0.01, keq=100. (2) 

Viewed from a more abstract perspective, what does this 
reaction do over time? When enough of lactose, CRPcAMP and 
nucleotides are present, the mRNA_lactose will start to be 
produced, and after a certain delay a significant amount of 
mRNA_lactose will be present. The concentrations of lactose and 
CRPcAMP need to be sufficiently high for a certain period of time 
in order for the reaction to proceed, a concentration of at least 0.1 
mmolair (the threshold) of both is sufficient in the example. The 
amount of nucleotides needed for the reaction to proceed is at least 
about 0.1 mmolair again. A ready supply of nucleotides is always 
synthesised by the cell. In order for the reaction to happen, the 
amount of mRNA must not be so high as to impede the reaction, a 
concentration lower than about 10 mmolair in this example. When 
the reaction proceeds, the amount of nucleotides will slowly 
decrease. The amount of mRNA will slowly accumulate by this 
reaction. Other parts of the system will supply new nucleotides and 
the mRNA will degrade after some time.  

The large amount of unknown variables, and computational 
complexity of integrating the resulting differential equations make 
a model using only chemical differential equations unwieldy. 
Therefore a more abstract description is introduced. The process is 
modelled in our temporal environment as follows. Temporal 
relationships are defined between a number of sources and an 

effect. Parameters are used to specify the minimal duration of the 
sources, the delay before the effect becomes apparent, and the 
duration of the effect; for the delay a minimum and maximum 
value can be set. As an illustration, the temporal relationship 
between the substances in the transcription of the lactose operon is 
determined. Since nucleotides are always present, these do not 
need to be mentioned in the temporal relationship, as it does not 
influence behaviour. The temporal relationship to determine when 
the mRNA_lactose is produced is denoted as: 

DNA_lactose + lactose + CRP_cAMP •→→e,f,g,h mRNA_lactose  (3) 

On the left-hand side the conditions that have to be met are 
listed. The DNA_lactose, meaning the presence of the lactose 
operon in the DNA. Also lactose, meaning the presence of lactose 
and CRP_cAMP, meaning the presence of CRP_cAMP to bind to 
the activation sites of the operon are listed on the left side. It is 
necessary to know at which concentration of the substance the 
‘presence’ state property holds; a threshold value is used to 
determine this. On the right hand side, the change that will happen 
later is listed, mRNA_lactose meaning the presence of lactose 
mRNA that is produced. The parameters e, f, g and h are positive 
real numbers that set the minimum and maximum delay (e and f), 
the condition duration (g) and the result duration (h). Realistic 
parameters for the values of e, f, g and h for the example are e = 
60, f = 60, g = 1 and h = 40, as the process to create the mRNA 
takes about 60 seconds, and the mRNA will stay in existence for 
about 40 seconds on average. When the condition holds for 1 
second or more, the transcription process starts.  

In the next section the temporal relationship used here is 
explained in more mathematical detail. 

3.2 The Temporal Modelling Framework 

In the previous section a temporal model has been presented of 
chemical processes using categories of substances and temporal 
relationships between these. This section defines more precisely 
the temporal relation •→→  that is called the “leads to” relation. The 
relation is defined in terms of its semantics. In order to understand 
the definition, a few semantic notions must be understood.  

Definition (State and Trace) 
The state of a system at a certain time point is described by a 
mapping that assigns a truth-value (true, or false) to all state atoms, 
i.e., all atomic statements relevant for a state of that system. A 
trace or trajectory of a system is a specific sequence of states of the 
system over a continuous time frame T (chosen to be the real 
numbers). The set : is the set of all possible traces. Let T be a 
trace, and t a time point, then state(T, t) denotes the state of the 
system in trace T at time point t. Let α be a state statement (i.e., a 
proposition in atomic state statements), then state(T, t) |== α is used 
to denote that in a given trace T at time t the statement α holds. 

The formal definition of the temporal operator •→→ is expressed 
in two parts, the forward in time part and the backward in time 
part. Time intervals are denoted by [x, y) (from and including x, to 
but not including y) and [x, y] (the same, but includes the y value). 

Definition (The xoo relationship) 
Let α and β be state statements. Then α leads to β, denoted by   
α →→e, f, g, h β, with time delay interval [e, f] and duration 
parameters  g and h if  



  

∀7 ∈ : ∀t1:  

 [∀t ∈ [t1 - g, t1) : state(7, t) |== α   ⇒   

 ∃d ∈ [e, f] ∀t ∈ [t1 + d, t1 + d + h)  : state(7, t) |== β ] 
Conversely, the state property β originates from state property α, 
denoted by α •e, f, g, h β, with time delay in [e, f] and duration 
parameters  g and h if  

∀ 7 ∈ 
� ∀ t2:  

 [∀t ∈ [t2, t2 + h)  : state(7, t) |== β ⇒   

 ∃d ∈ [e, f] ∀t ∈ [t2 - d - g, t2 - d)  state(7, t) |==  α] 
If both  α →→e,f,g,h β,  and α •e,f,g,h β hold, this is denoted by:  
α •→→e,f,g,h β . 
 
The definition of the relationships as given above, can be applied 
to situations where the sources hold for longer than the minimum 
g. The result for a longer duration of α for α •→→ β is depicted in 
Figure 2. The additional duration that the source holds, is also 
added to the duration that the result will hold, provided that the 
condition e + h ≥ f holds. This is because the definition can be 
applied at each subinterval of α, resulting in many overlapping 
intervals of β. The end result is that the additional duration also 
extends the duration that the resulting state property β holds. 

 

 α  
 β  

actual delay

duration g

duration h

minimum delay
maximum delay

additional duration

additional duration

 

Figure 2.   Temporal relationships for longer durations  

Using these temporal relationships, the bacterial regulation can be 
modelled from the chemical perspective. The temporal 
relationships capture the timing of the underlying chemical 
reactions. The durations and delay minimum and maximum can be 
specified to fit the timing of the chemistry. The formal definition of 
the temporal relation operator aids the construction of simulation 
and derivation software to support the inspection of modelling 
results. 

4. INTENTIONAL DYNAMIC 
MODELLING OF E. COLI BEHAVIOUR 

Models for intentional state properties like those of (Dretske, 1991; 
Rao and Georgeff, 1991) usually do not take into account their 
dynamics well. To be able to closely relate an intentional model to 
the bacterial realisation in chemical processes, such dynamics are 
crucial. Therefore the temporal modelling approach based on the 
temporal ‘leads to’ relation introduced in Section 3 is applied to the 
dynamics of intentional state properties. The resulting model is a 
transparent high level description of the cellular processes and their 
control, understandable for the reader not versed in the 
technicalities of the detailed chemical pathways in the cell.  

 The model covers the whole behaviour of E. coli, from food 
import to internal metabolism to growth. First an example of the 
use of temporal relationships between intentional state properties to 
model their dynamic interactions is discussed. Next, an overview 
of part of the model is presented. 

4.1 Dynamic Interactions between Intentional 
State Properties 

As a simplified example, the temporal relationships modelling the 
interaction between a desire, some beliefs and an intention is 
discussed. The following notations are used for the intentional state 
properties: 
 
δ   denotes a desire 
β   denotes a belief  
ρ1   denotes a reason for an intention, given a desire for an 

intention (this is a specific conjunction of beliefs) 
ι   denotes an intention 
ρ2   denotes a reason for action initiation, given an intention (this is 

a specific conjunction of beliefs; i.e., beliefs in an opportunity) 
α  is used to denote action initiation or readiness 
θ   denotes an action’s successfulness condition on the actual 

world state (enabling condition) 
 
The example concerns the desire δ(lactose_import), the intention 
ι(lactose_import), and beliefs  β(lactose_externally_present) and 
β(not glucose_externally_present). The general idea is that the 
desire and the beliefs together lead to the intention, i.e., in a trace 
where the desire and the beliefs hold for some time interval, always 
the intention will hold for some later time interval. The desire and 
the beliefs (the reason for the creation of the intention) must hold 
for at least some time duration g. After a delay larger than some 
minimum delay e and shorter than some maximum delay f, the 
intention starts to hold for some time duration h. This temporal 
relationship is denoted in relation (4). In Figure 3 the timing 
relationships between the arguments are visualised. 

 

desire(lactose_import)

intention(lactose_import)

belief(lactose_externally_present)
belief(not glucose_externally_present)

actual delay

duration g

duration h

minimum delay
maximum delay  

 
Figure 3.  Explanation of timings for temporal relationships 

 
For each intentional state property, its status over time is depicted. 
Time increases towards the right. The shaded boxes indicate when 
the state properties hold. 

          δ(lactose_import)  
           ∧   β(lactose_externally_present)  
           ∧   β(not glucose_externally_present)  

  •→→e,f,g,h  ι(lactose_import).  (4) 

The intentional state properties are related to the substances, as 
discussed in the Section 2.3. In relation to (4), the presence of 
lactose and the presence of CRPcAMP substances are interpreted 
as the beliefs in the second and third line, respectively. The 
presence of a specific DNA part relates to the desire and the 
presence of a specific mRNA to the intention. The nucleotides and 
other, intermediate, substances are not labelled with intentional 
state properties; these substances are only part of the detailed 
machinery of bacterial processes, and play no decisive role in the 
lactose uptake behaviour. Leaving out these, the intentional model 
provides a more abstract picture of the processes; if new insights 
were to prove that some substances play  



  

 

 

Figure 4.  Abbreviated simulation results when glucose is 90 seconds present, then absent, fluctuating.  
The negative beliefs (reverse of the postive beliefs) and the desires (all hold) have been left out to reduce the size  

 
a significant role in the decision process, these can easily be added. 
The timing parameters e, f, g, and h are the same as those found in 
the abstract chemical model, see Section 3.1, thus relation (5) 
holds. 

          δ(lactose_import)  
           ∧   β(lactose_externally_present)  
           ∧   β(not glucose_externally_present)  

  •→→ 60,60,1,40 ι(lactose_import).  (5) 

 

 

4.2 Overview of Part of the E. coli Model 

A model has been made describing in an abstract manner the 
processes of the entire cell, including the intracellular processes 
and their control and metabolism. Due to lack of space, only part of 
the model is discussed. The e, f, g and h values for the temporal 
relationships are given in seconds.  
 

Belief generation 
The presence of certain substances in the environment leads to the 
generation of beliefs. The observation of glucose is shown, it is 
complicated by inhibitors and the energy level. 
 



  

(glucose_high_outside or 2-deoxyglucose_outside) &  
no 6-deoxyglucose_outside & (energy_high or energy_medium)  
•→→ 0,0,0.230,0.230 β(glucose_outside) &  
not β(no glucose_outside). 

(glucose_medium_outside or glucose_high_outside or  
2-deoxyglucose_outside) &  
no 6-deoxyglucose_outside & energy_low  
•→→ 0,0,0.230,0.230 β(glucose_outside) and  
not β(no glucose_outside). 

 
Desires  
The cell has a large number of innate desires: it always desires to 
grow, it desires to import nitrogen, to import lactose, and so on.  
 

δ(grow). 
δ(nitrogen_import). 
 

Intentions  
The cell will intend to perform an action if a desire and sufficient 
additional reasons are present. The desire to import lactose, 
combined with the additional reason ρ1(lactose_import)  to import 
lactose results in the intention to import lactose. The additional 
reasons to import lactose are the belief that lactose is present 
outside and the belief that glucose is not present outside. 
 

δ(lactose_import) & ρ1(lactose_import)   
•→→ 60,60,1,40 ι(lactose_import). 

δ(phosphorous_import) & ρ1(phosphorous_import)   
•→→ 60,60,1,40 ι(phosphorous_import). 

 

ρ1(lactose_import)  =def β(lactose_outside)  
                                & β(famine). 

ρ1(phosphorous_import)  =def β(phosphorous_outside). 
 
Initiating actions  
When the cell has the intention to perform an action, and an 
additional reason or opportunity ρ2(lactose_import)  presents itself, 
it generates the action to be performed. For example, when there is 
an intention to perform lactose import, and beliefs are present that 
no glucose is presenrt outside and lactose is present outside, the 
lactose import action is initiated. 
 

ι(lactose_import) & ρ2(lactose_import)   
•→→ 0,0,60,600 α(lactose_import). 

 

ρ2(lactose_import)  =def β(lactose_outside)  
                               & β(no glucose_outside). 

 

Succesful action performance    
Actions will succesfully produce effects, depending on the state of 
the environment (enabling conditions). The sulphur import action 
will result in sulphur inside, if it is present in the environment. The 
effects of inhibitors is also included, for example, as glucose is 
imported, and no 6-deoxyglucose is blocking the import, also the 
useless 2-deoxyglucose will be imported if present. 
 

α(sulfur_import) & θ(sulfur_import)  
•→→ 0,0,4,1 sulfur_inside. 

α(glucose_import) & θ(2-deoxyglucose_import) 
•→→ 0,0,4,1 2-deoxyglucose_inside.  
 

θ(sulfur_import) =def sulfur_outside. 
θ(2-deoxyglucose_import) =def no 6-deoxy_glucose_outside  & 2-

deoxyglucose_outside & (energy_medium or energy_high). 

5. SOFTWARE ENVIRONMENT 

Automated support for the continuous time modelling approach has 
been developed for both simulation and analysis, written in about 
18000 lines of C++.  

5.1 Simulation Software 

As a continuous time extension of the paradigm of executable 
temporal logic, cf. (Barringer et al., 1996), a simulation program 
has been written to automatically generate a simulated trace on the 
basis of a set of temporal ‘leads to’ relationships. The program is a 
special purpose tool to derive the results reasoning forwards in 
time, similar to what happens in executable temporal logic.  

In order to derive the consequences of the temporal 
relationships within a specific interval of time, a cycle is 
performed, starting at time 0. For each rule, for which the 
consequent does not already hold, the earliest starting time that the 
antecedent is satisfied, is computed. The rule with the earliest start 
time of the antecedent is chosen. If several rules have a satisfied  
antecedent at exactly the same time, the rule appearing the first in 
the specification is taken. This rule is then processed at that time, 
adding the consequent to the trace. This process is repeated until 
the end point of the simulation time interval is reached or until no 
rules can be found anymore that can be processed.  

Figure 4 gives some sample simulation results. The figure was 
automatically generated, but because of space only a selection of 
intentional state properties is shown. The timelines are in seconds, 
time flows to the right. Dark boxes above the line mean the state 
property holds, light boxes below the line mean that the state 
property does not hold. In Figure 4 glucose fluctuates rapidly in the 
environment; due to the speed of the fluctuations, the cell is able to 
maintain a stable internal (steady) state.  

5.2 Analysis Software 

The analysis program that has been constructed takes a set of ‘leads 
to’ relationships and an existing trace of behaviour as input and 
creates an interpretation of what happens in this trace and a check 
whether all temporal relationships hold. The program marks any 
deficiencies in the trace compared with what should be there due to 
the temporal relationships. Both the →→  and •  parts of the 
temporal relationships are checked. 

If a relationship does not hold completely, this is marked in the 
picture by the program and saved to a log. The program produces 
yellow marks for unexpected events. At these moments, the event 
is not produced by any temporal relationship; the event cannot be 
explained. This indicates whether the model, consisting of the 
temporal relationships provided to the checking program, is 
complete with regards to the trace given; the yellow marks show 
the facts that the given model cannot predict. The red marks 
indicate that an event has not happened, that should have 
happened. This indicates faults in the model provided, the red 
marks signify rules that predict wrongly. In addition to checking 
whether the rules hold, the checker produces an informal reading of 
the trace. The reading is automatically generated, using a simple 
substitution, from the information in the intentional trace. 

 



  

6. DISCUSSION 

The relationship between the chemical regulation substances and 
the intentional state properties for the behaviour description shows 
that the intentional model presented in Section 4, encompassing the 
whole cell, is justified. The simulation of the intentional model 
proves that the intentional model corresponds to the chemical 
bacterial regulation. In other words, the BDI model apparently 
matches well with the regulation that happens in living cells.  

In general, the work presented here shows how to intentionalise 
continuous (real) time processes. The presented method of 
intentionalisation bridges the gap between processes occurring as a 
continuous flow and discrete binary decision processes.  

For the intentional model, the approach implies that a BDI-
model is needed in which temporal relationships are defined 
between the different intentional state properties, and in relation to 
events in the external world. In the processing of the temporalised 
BDI-model introduced, a temporal simulation process replaces the 
inference process as usually applied to process BDI-models. 

The intentional model describes E. coli as having a body, the 
biochemical processes in the real world. Apart from the 
significance of having a body, it is coupled with its environment; 
e.g., (Clark, 1997). For work on embodiment see (Dautenhahn, 
Ogden & Quick, 2002). For an approach to simulating biochemical 
processes, without using state or time, see (Regev, Silverman & 
Shapiro, 2001). In (Romero & Karp, 2001), the EcoCyc 
pathway/genome database is used to predict what substances E. 
coli will produce in a particular growth medium. Also the database 
is checked for completeness. In (Ideker, Thorsson & Karp, 2000) 
an acyclic boolean network computes the steady state. It cannot 
handle varying time delays as the approach in this paper does, yet 
they plan to in further work. The boolean approach describes each 
gene with a single logical value. The authors note it can be 
extended to allow abstracted properties (several genes at once), as 
well as that the approach could be extended to include different 
levels of cell regulation, as the approach in this paper does. In 
contrast to the approaches mentioned, our approach covers 
continuous time dynamics, also for non-steady state situations. 

The value of this work for Biology lies in managing the 
complexity of living systems. For example, the internal processes 
within organisms often are so complex that explanations of their 
behaviour in terms of a large variety of physical and chemical 
processes are inaccessible. This paper shows how, at least for 
moderately complex organisms, abstraction and intentionalisation 
of such continuous processes can be done in a justifiable manner.  
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